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• PURPOSE: To compare the performance of a novel con- 
volutional neural network (CNN) classifier and human 

graders in detecting angle closure in EyeCam (Clarity 

Medical Systems, Pleasanton, California, USA) gonio- 
photographs. 
• DESIGN: Retrospective cross-sectional study. 
• METHODS: Subjects from the Chinese American Eye 
Study underwent EyeCam goniophotography in 4 angle 
quadrants. A CNN classifier based on the ResNet-50 ar- 
chitecture was trained to detect angle closure, defined as 
inability to visualize the pigmented trabecular meshwork, 
using reference labels by a single experienced glaucoma 
specialist. The performance of the CNN classifier was 
assessed using an independent test dataset and reference 
labels by the single glaucoma specialist or a panel of 3 

glaucoma specialists. This performance was compared to 

that of 9 human graders with a range of clinical experi- 
ence. Outcome measures included area under the receiver 
operating characteristic curve (AUC) metrics and Cohen 

kappa coefficients in the binary classification of open or 
closed angle. 
• RESULTS: The CNN classifier was developed using 
29,706 open and 2,929 closed angle images. The inde- 
pendent test dataset was composed of 600 open and 400 

closed angle images. The CNN classifier achieved excel- 
lent performance based on single-grader (AUC = 0.969) 
and consensus (AUC = 0.952) labels. The agree- 
ment between the CNN classifier and consensus labels 
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( κ = 0.746) surpassed that of all non-reference human 

graders ( κ = 0.578-0.702). Human grader agreement 
with consensus labels improved with clinical experience 
( P = 0.03). 
• CONCLUSION: A CNN classifier can effectively de- 
tect angle closure in goniophotographs with performance 
comparable to that of an experienced glaucoma specialist. 
This provides an automated method to support remote 
detection of patients at risk for primary angle closure 
glaucoma. (Am J Ophthalmol 2021;226: 100–107. ©
2021 Elsevier Inc. All rights reserved.) 
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INTRODUCTION 

 

losure of the anterior chamber angle is the primary
risk factor for developing primary angle closure glau-
coma (PACG), a leading cause of permanent vision

oss worldwide. 1 Angle closure leads to impaired outflow of
queous humor and elevated intraocular pressure (IOP), a
ey risk factor for glaucomatous optic neuropathy. 2 There
re effective treatments for angle closure, such as laser pe-
ipheral iridotomy or lens extraction, that can lower IOP
nd decrease the risk of developing PACG and glaucoma-
elated vision loss. 3-5 However, angle closure must first be
etected before eyecare providers can assess its severity and
rovide appropriate clinical care. The challenge of detect-
ng patients at risk for PACG is magnified by the fact that

ost cases occur in parts of the world with relatively limited
ccess to eyecare. 1 , 6 

Gonioscopy is the current clinical standard for evaluat-
ng the angle, detecting angle closure, and determining the
linical management of patients at risk for PACG. How-
ver, gonioscopy has several shortcomings that limit its util-
ty for widespread detection of angle closure. Gonioscopy
s a skill-dependent examination technique with limited
nterobserver agreement, even among experienced glau-
oma specialists. 7 In addition, gonioscopy must be per-
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formed in person, and results of the examination cannot be
viewed or verified remotely by other eyecare providers. Fi-
nally, records of gonioscopic examinations are descriptive,
which makes it difficult to monitor for longitudinal progres-
sion of angle closure. 

Goniophotography is an alternative method for evalu-
ating the angle and detecting angle closure that has some
benefits over gonioscopy. There are semi-automated gonio-
photography devices, such as the EyeCam (Clarity Medi-
cal Systems, Pleasanton, California, USA) and Gonioscope
GS-1 (Nidek Co, Gamagori, Japan), that can be operated
by a trained technician. In addition, goniophotographs can
be evaluated remotely by expert graders and compared to
identify anatomic changes over time. Crucially, there is
moderate-to-excellent agreement between gonioscopy and
both manual goniophotography and EyeCam in the detec-
tion of angle closure. 8-10 However, a current limitation of
goniophotography is that images require manual interpreta-
tion by a human grader. This process can be labor- and time-
intensive, and it is unclear how much clinical experience
plays a role in the grader’s performance. In this study, we
apply deep learning methods to population-based EyeCam
data to develop an automated convolutional neural net-
work (CNN) classifier that grades goniophotographs and
detects angle closure. We then compare the performance of
this CNN classifier to that of human graders with a range
of clinical experience. 

METHODS 

Subjects were recruited as part of the Chinese Ameri-
can Eye Study (CHES), a population-based, cross-sectional
study that included 4,572 Chinese participants aged 50
years and older residing in the city of Monterey Park, Cali-
fornia. Ethics committee approval was previously obtained
from the University of Southern California Medical Center
Institutional Review Board. All study procedures adhered
to the recommendations of the Declaration of Helsinki. All
study participants provided informed consent. 

Inclusion criteria for the study included receipt of Eye-
Cam goniophotography during CHES. Exclusion criteria
included media opacities that precluded visualization of
angle structures during EyeCam goniophotography. Sub-
jects with history of prior laser peripheral iridotomy and/or
eye surgery (eg, cataract extraction, incisional glaucoma
surgery) were not excluded, as it is possible to have per-
sistent angle closure despite treatment. Both eyes from a
single subject could be recruited provided that they fulfilled

the inclusion and exclusion criteria. 

VOL. 226 GLAUCOMA EXPERT-LEVEL DE
EYECAM IMAGING AND IMAGE GRADING: EyeCam
maging was performed by a single trained technician
ith the subject in the supine position under dark am-
ient lighting conditions (0.1 cd/m 

2 ). Topical anesthetic
rops (proparacaine hydrochloride 0.5%; Alcon Laborato-
ies, Inc, Fort Worth, Texas, USA) and a coupling gel were
pplied to the eye. Images were obtained from all 4 quad-
ants (inferior, superior, nasal, and temporal quadrants se-
uentially) of both eyes. Multiple images could be taken
er quadrant if image quality was deemed to be unsatisfac-
ory. Care was taken to avoid compressing or deforming the
ye. If the view of the angle was blocked by a convex iris
urvature, the technician was permitted to rotate the probe
ip up to 10 degrees anteriorly along the cornea to better
isualize angle structures. 

EyeCam images were uploaded to a password-protected
nline data storage system. Images were originally graded
etween the years 2012 and 2013 by a single reference
laucoma specialist (S.L.) with 18 years of clinical oph-
halmology experience (including years spent in residency).
ach image was evaluated for angle grade and image quality.
ngle grading was based on the visualization of anatomic

andmarks in at least half (greater than 50%) of each
uadrant: grade 0, no structures visualized; grade 1, non-
igmented trabecular meshwork (TM) visible; grade 2;
igmented TM visible; grade 3, scleral spur visible; grade
, ciliary body visible. These angle grading categories
atched the modified Shaffer classification system used to

rade the eyes clinically on gonioscopy. Image quality was
raded between 1 and 3, with grade 1 representing a clear
mage, grade 2 a slightly blurred image with distinguishable
ngle structures, and grade 3 a blurry image with indistin-
uishable angle structures. Images were not excluded from
he analysis or CNN classifier development and testing
ased on image quality. The single reference glaucoma spe-
ialist (S.L.) also regraded 550 randomly selected images
66 grade 0, 116 grade 1, 98 grade 2, 140 grade 3, 130 grade
) at least 1 month after they were originally graded in
013. 

Four hundred and fifty randomly selected images were
dded to the 550 regraded images to create a balanced test
ataset (200 of each grade) composed of 1,000 images. This
est dataset was graded in the year 2020 by 8 other graders
ith a range of clinical ophthalmology experience (includ-

ng years spent in residency). Two graders (B.S., B.W.) were
ellowship-trained glaucoma specialists with, respectively,
1 and 5 years of clinical experience. Two graders were non-
laucoma specialists (K.G., A.N.) with 8 and 5 years of
espective clinical experience. The remaining graders in-
luded a glaucoma fellow with 4 years of experience (J.D.),
 residents with 3 years and 1 year of experience (M.S.,
.S.), and a first-year medical student (J.R.). The medi-

al student was provided with a half-hour lecture on an-
le anatomy owing to having no prior experience examin-
ng the angle or grading goniophotographs. In addition, all
raders were provided with a reference dataset composed of
TECTION OF ANGLE CLOSURE 101 



FIGURE 1. Representative EyeCam images of a closed (Top) 
and open (Bottom) angle. 
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50 images per angle grade (grades 0-4) randomly selected
from the training dataset. Each image was labeled with the
angle grade provided by the reference glaucoma special-
ist and used to train the CNN classifier. The graders were
instructed to review as many reference images as needed
to feel comfortable with the task prior to grading the test
dataset. They were also instructed to provide an angle grade
to be consistent with the reference glaucoma specialist and
CNN classifier. These grades were later binarized to assess
the performance of each grader. The graders were not in-
formed about the distribution of angle grades in the test
dataset. 

• CONVOLUTIONAL NEURAL NETWORK TRAINING: All
images were reoriented so that the cornea/sclera was on the
left and the iris was on the right ( Figure 1 ). Excess images
from the test dataset owing to image grouping by subject
were discarded. An unbalanced training dataset was gen-
erated using all images from the remaining subjects. There
was no overlap of subjects between the training and test
102 AMERICAN JOURNAL OF OP
atasets in order to prevent data leakage (ie, inter- and
ntra-eye correlations). Data manipulations were performed
n the Python programming language. 

A CNN classifier was developed to classify EyeCam im-
ges as either open angle (grades 2 to 4) or closed angle
grades 0 and 1). For a given image, the CNN produced
 normalized probability distribution over Shaffer grades
 = [p 0 , p 1 , p 2 , p 3 , p 4 ]. Binary probabilities for closed an-
le (grades 0 and 1) and open angle (grades 2 to 4) were
enerated by summing probabilities over the corresponding
rades (ie, P closed = p 0 + p 1 and P open = p 2 + p 3 + p 4 ). A
losed angle prediction was considered a positive detection
vent. 

Images were preprocessed to 224 × 224 pixels in order to
educe hardware demands during classifier training. RGB
hannels were normalized to have a mean of [0.485, 0.456,
.406] and a standard deviation of [0.229, 0.224, 0.225].
uring training, images were augmented through random

otation between 0 and 20 degrees, random vertical flips,
andom horizontal flips, and random zoom between 100%
nd 110%, and random perturbations to balance and con-
rast. Differences in class distributions in the unbalanced
raining dataset were addressed by oversampling the under-
epresented classes. 

The CNN was based on the ResNet-50 architecture pre-
rained on the ImageNet Challenge dataset. 11 The aver-
ge pooling layer was replaced by an adaptive pooling layer
here bin size is proportional to input image size; this en-
bles the CNN to be applied to input images of arbitrary
izes. 12 This feature was not used during training owing to
imited video random access memory. The final fully con-
ected layer of the ResNet-50 architecture was changed to
ave 5 nodes. Softmax regression was used to calculate the
ultinomial probability of the 5 grades with a cross-entropy

oss used during training. 
A cyclical learning rate was set using the “1cycle learning

ate policy.”13 The final layer of the CNN was trained first,
rior to fine-tuning all layers via back-propagation. Test-
ime augmentation was performed by applying the same
ugmentations at test time and averaging predictions over
ugmentation variants. 

CONVOLUTIONAL NEURAL NETWORK TESTING: Refer-
nce labels in the test dataset were determined in 2 ways:
1) angle status (open or closed) provided by the single ref-
rence glaucoma specialist (S.L.), or (2) angle status (open
r closed) determined by the consensus of 3 glaucoma spe-
ialists (S.L., B.S., B.W.), defined as the majority opinion
f the 3 graders. 

The performance of the CNN classifier and human
raders in the binary classification of closed (grades 0 and
) or open (grades 2 to 4) angle was compared by plot-
ing the receiver operating characteristic (ROC) curve of
he CNN classifier with the false-positive rates (FPRs) and
rue-positive rates (TPRs) of human predictions. In order
o evaluate variability in CNN performance, ROC curves
HTHALMOLOGY JUNE 2021 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 2. Receiver operating characteristic curve with 95% 

confidence interval (gray bar) of convolutional neural network 

(CNN) classifier performance in detecting angle closure in the 
test dataset based on labels by the reference glaucoma special- 
ist. Performance of human graders shown with years of clinical 
experience in parentheses. 
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3  
corresponding to the lower and upper bounds of the 95%
confidence interval in AUC values were generated by boot-
strapping. The predictive accuracy of the CNN classifier
was calculated for each angle grade class (grades 0-4) based
on single-grader labels. Accuracy was defined as (true posi-
tive + true negative) / all cases. 

The 550 images regraded by the single reference glau-
coma specialist (S.L.) were used to assess intra-grader re-
peatability of angle grades. This regraded dataset was up-
sampled to generate a balanced dataset (ie, equal numbers
of grades 0, 1, 2, 3, and 4) of 1,000 images, similar to the
test dataset graded by the other human graders. 

Class activation maps were generated using gradient-
weighted class activation mapping to visualize what image
features were important to CNN function. 14 

• STATISTICAL ANALYSIS: All statistical analysis was per-
formed using version 14.2 of the Stata statistical software
package (StataCorp LLC, College Station, Texas, USA).
Analyses were conducted using a significance level of 0.05.

Continuous variables were described by calculating
means, standard deviations, and ranges. Categorical vari-
ables were described by calculating counts and percent-
ages. Cohen kappa coefficients were calculated to assess the
agreement between the consensus labels and CNN classi-
fier or human graders in the binary classification of open or
closed angle. 

Linear regression was performed to detect linear trends in
the relationship between years of clinical experience and
FPRs or TPRs of human graders in the detection of angle
closure based on single-grader and consensus labels. The
same method was applied to detect linear trends in the re-
lationship between kappa coefficients and years of clinical
experience based on consensus labels. Grades by all hu-
man graders, excluding the reference grades used to train
the CNN classifier, were included in the linear trend anal-
yses for single-grader labels. Grades by the 3 glaucoma spe-
cialists used to derive the consensus labels were excluded
from the linear trend analyses for consensus labels. How-
ever, the second set of grades provided by the reference
glaucoma specialist for the test dataset were included in the
analyses. 

RESULTS 

Of the 4,582 total CHES subjects, 4,152 (90.6%) received
EyeCam imaging. The mean age of subjects included in the
study was 61.5 ± 8.8 years (range 55-99 years). A total of
1,523 (36.7%) subjects were male and 2,629 (63.3%) were
female. 

The total dataset was composed of 33,635 EyeCam im-
ages (935 grade 0; 2,394 grade 1; 6,504 grade 2; 14,575 grade
VOL. 226 GLAUCOMA EXPERT-LEVEL DE
; 9,227 grade 4) graded by the reference glaucoma special-
st. The training dataset was composed of 32,635 images
735 grade 0; 2,194 grade 1; 6,304 grade 2; 14,375 grade 3;
,027 grade 4) from 3,999 subjects. The independent test
ataset was composed of 1,000 images (200 of each grade)
rom 153 subjects. 

DEEP LEARNING CLASSIFIER AND HUMAN PERFOR-

ANCE IN DETECTING ANGLE CLOSURE: The CNN clas-
ifier achieved an AUC of 0.969 (95% confidence interval
.961-0.976) in detecting angle closure based on single-
rader labels ( Figure 2 ). Human graders demonstrated a
ange of performance in the same task, with a signifi-
ant trend toward increased TPR (range = 0.701-0.973;
 = 0.01) but not FPR (range = 0.042-0.219; P = 0.31)
ith increased clinical experience (Supplemental Table 1,
vailable at AJO.com). 

The kappa coefficient for the agreement between CNN
lassifier and the single-grader labels was 0.823 (Supple-
ental Table 1). This was greater than the reference glau-

oma specialist, who achieved a kappa coefficient of 0.754
hen regrading the test dataset. The remaining graders had
appa coefficients ranging between 0.580 and 0.722 (me-
ian = 0.655). There was no association between agree-
ent with the single-grader labels and clinical experience

 P = 0.616). 
The predictive accuracy of the CNN classifier in detect-

ng angle closure based on single-grader labels among im-
ges with grader-assigned angle grade 0 was 97.5%, angle
rade 1 was 90.0%, angle grade 2 was 65.5%, angle grade
 was 99.0%, and angle grade 4 was 100.0% (Supplemen-
TECTION OF ANGLE CLOSURE 103 



FIGURE 3. Receiver operating characteristic curve with 95% 

confidence interval (gray bar) of convolutional neural network 

(CNN) classifier performance in detecting angle closure in the 
test dataset based on labels by the panel of glaucoma specialists. 
Performance of human graders shown with years of clinical ex- 
perience in parentheses. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 4. Representative class activation maps of the final 
layer of the convolutional neural network indicating the most 
salient (red and yellow) regions of the images. Representative 
images of open (Top) and closed (Bottom) angles. 
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tal Figure 1, available at AJO.com). Seventy-nine of the 96
(82.3%) misclassifications (open angle predicted as angle
closure or vice versa) occurred in images corresponding to
grader-assigned angle grade 1 or 2 (Supplemental Figure 2,
available at AJO.com). 

The CNN classifier achieved an AUC of 0.952 (95%
confidence interval, 0.942-0.960) in detecting angle closure
based on consensus labels ( Figure 3 ). Human graders again
demonstrated a range of performance in the same task, with
a significant trend toward increased TPR (range = 0.630-
0.893; P = 0.03) but not FPR (range = 0.023-0.126;
P = 0.18) with increased clinical experience (Supplemen-
tal Table 2, available at AJO.com). 

The kappa coefficient for the agreement between CNN
classifier and the consensus labels was 0.746 (Supplemental
Table 2). This was similar to the reference glaucoma special-
ist, who achieved a kappa coefficient of 0.773 when regrad-
ing the test dataset. The remaining graders had kappa coeffi-
cients ranging between 0.578 and 0.702 (median = 0.656).
There was a significant trend toward improved agreement
with the consensus labels with increased clinical experience
( P = 0.03). 

The performance of the CNN classifier was better for
images with quality grade 1 (AUC = 0.981, n = 495)
compared to images with quality grades 2 (AUC = 0.908,
n = 484) and 3 (AUC = 0.923, n = 21). 

The CNN classifier focused primarily on the sclera-iris
junction to detect angle closure based on class activation
maps indicating its strategy ( Figure 4 ). The central portion
of images appeared to be more salient than peripheral por-

tions. c  

104 AMERICAN JOURNAL OF OP
DISCUSSION 

n this study, we compared the performance of a novel CNN
lassifier and human graders in detecting angle closure
n EyeCam goniophotographs. The CNN classifier based
n the ResNet-50 architecture achieved excellent perfor-
ance in detecting angle closure based on both single-

rader and consensus labels. Classifier agreement with the
onsensus labels also surpassed that of non-reference human
raders, which tended to improve with increased clinical
xperience. Class activation maps revealed that the CNN
lassifier demonstrates human-like behavior by focusing on
ortions of images that contain salient anatomic features.
e believe these findings have important implications for

utomating clinical evaluations of the anterior chamber an-
le, remote care of angle closure patients, and reducing bar-
iers to eyecare in populations at high risk for PACG. 

The performance of our CNN classifier exceeds the intra-
rader repeatability of an experienced glaucoma special-
st and the diagnostic ability of human graders with less
linical experience. We first used reference labels provided
y a single experienced glaucoma specialist with nearly 2
ecades of clinical experience to train and test the CNN
lassifier. Its performance ( κ = 0.823, all quadrants) ex-
eeded that of a previously reported classification algorithm
or detecting angle closure in EyeCam images developed us-
ng traditional image analysis techniques ( κ = 0.50-0.73,
ndividual quadrants). 15 The CNN classifier also demon-
trated superior agreement with single-grader labels com-
ared to all human graders, surpassing even the reference
laucoma specialist regrading the test dataset. However, this
omparison may have been biased by the fact that the CNN
HTHALMOLOGY JUNE 2021 
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classifier was developed to simulate the grading behavior of
the reference glaucoma specialist. Therefore, we used con-
sensus labels provided by a panel of 3 glaucoma specialists
to assess the generalizability of the CNN classifier in a sce-
nario where the reference glaucoma specialist was not the
sole determinant of angle status. In this case, the agreement
of the CNN classifier with the consensus labels remained
superior to that of human graders who did not contribute
to the consensus and was comparable to the reference glau-
coma specialist regrading the test dataset. This suggests that
the superior performance by the CNN classifier was unre-
lated to an inherent bias of data labels and comparisons. 

Aside from approximating human intra-grader repeata-
bility, the CNN demonstrates other human-like behaviors.
First, the accuracy of the CNN classifier is worst for angle
grade 2 images, which intuitively should be associated with
the highest uncertainty by human graders owing to chal-
lenges of identifying pigmented TM when directly adjacent
to the iris. The majority of misclassifications occurred when
the reference grade was 2 and the predicted grade was 1 or
vice versa. Second, its performance is reduced by decreased
image quality. While it is surprising that classifier perfor-
mance was similar for image quality grade 2 and 3 images,
this may be related to the low number of poor-quality im-
ages (n = 21). Finally, class activation maps indicate that
the CNN classifier focuses on the central sclera-iris junc-
tion, which simulates the general strategy employed by hu-
man graders. Further analysis of these maps may provide in-
sight into what strategy the CNN (eg, best or worst case),
and indirectly the reference glaucoma specialist, employed
to make its predictions. 

Clinical experience appears to play an important role in
the performance of human graders in detecting angle clo-
sure in goniophotographs. Among non-reference human
graders, level of agreement with consensus labels provided
by the panel of glaucoma specialists was significantly cor-
related with clinical experience. Interestingly, grader sen-
sitivity appeared to improve with clinical experience while
specificity did not, despite varying among graders. These re-
sults suggest that there is a tangible benefit to having an
experienced clinician evaluate goniophotographs to detect
angle closure. However, if this is not feasible, a CNN clas-
sifier trained on high-quality reference labels by an experi-
enced glaucoma specialist can provide comparable perfor-
mance. 

Agreement between gonioscopy, the clinical standard
for detecting angle closure, and manually graded EyeCam
ranges from moderate to excellent in the detection of
angle closure. 8-10 This agreement was previously reported
to be moderate to excellent depending on the quadrant
( κ = 0.52-0.60) in the same CHES dataset used by our cur-
rent study. 10 These metrics are slightly lower than those re-
ported by a smaller hospital-based study in Singapore, in
which agreement was excellent in all quadrants ( κ = 0.73-
0.88). 15 Disagreement between gonioscopy and EyeCam
may arise owing to differences in optics between the go-
VOL. 226 GLAUCOMA EXPERT-LEVEL DE
iolens and EyeCam camera or in body position during ex-
mination. 16 , 17 While a detailed analysis of agreement be-
ween gonioscopy and EyeCam fell outside the scope of our
urrent study, we agree that further investigation is neces-
ary to determine the utility of our CNN classifier in detect-
ng gonioscopic angle closure. 

The burden of PACG on patients and healthcare sys-
ems is expected to increase over the next 2 decades ow-
ng to aging of the world’s population and rising demands
or healthcare resources. Two solutions that have been pro-
osed in other fields of medicine are telemedicine and ar-
ificial intelligence–assisted care. 18 , 19 Remote screening of
atients to detect patients with or at high risk for PACG
ill be crucial in reducing the significant ocular morbid-

ty associated with the disease; PACG remains a common
ause of both unilateral and bilateral permanent blindness
orldwide even though treatments with laser and surgery
re highly effective if the disease is detected early in its
ourse. 3-5 , 19 Artificial intelligence–assisted care of angle
losure patients may lead to better disease detection than
y less experienced eyecare providers alone, as evidenced
y the CNN classifier developed in this study. While au-
omated methods to detect angle closure exist for anterior
egment optical coherence tomography, automated gonio-
hotography provides an alternative in the detection of pa-
ients with angle closure who would benefit from a complete
cular examination by a trained eyecare provider to rule out
ACG. 20 , 21 

Our study has some limitations. First, grading of Eye-
am goniophotographs in CHES was performed by a sin-

le experienced glaucoma expert. While our analyses in-
icate that classifier performance is excellent even when
ssessed using reference labels by a panel of glaucoma spe-
ialists, it is possible that a classifier trained using consen-
us labels would produce more generalizable performance.
econd, all subjects in CHES were self-identified as Chi-
ese American, which could limit classifier generalizability
o other demographic groups. 22 , 23 Finally, all images were
cquired using a single goniophotography device. EyeCam
nd manual goniophotography demonstrate similar perfor-
ance in detecting gonioscopic angle closure, but there

s only fair agreement between the two. 9 Therefore, the
NN classifier may not generalize to other forms of gonio-
hotography. In addition, the EyeCam as a goniophotog-
aphy device has its own limitations, such as the need to
mage patients in the supine position, that may limit its
greement with gonioscopy and convenience as a screen-
ng tool. 22 , 23 Dynamic indentation of globe to widen the
ngle and identify Peripheral anterior synechiae (PAS) is
lso challenging owing to the shape and size of the Eye-
am imaging probe. Finally, EyeCam takes as long as go-
ioscopy per quadrant, if not longer, even when performed
y a trained technician. Therefore, generalizability stud-
es using faster and less operator-dependent modern gonio-
hotography devices, such as the Gonioscope GS-1, are
arranted. 
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In this study, we developed an automated CNN classifier
for detecting angle closure in EyeCam goniophotographs.
The recent landmark Zhongshan Angle Closure Preven-
tion Trial has raised questions about the benefit of treat-
ing patients with early angle closure, and further work is
needed to identify patients with early angle closure who are
at high risk of elevated IOP and glaucomatous optic neu-
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